.. _static-page: Iris Interactive Plots ====================== Introduction ------------ You will see the tutorial for the implementation of interactive plots using NNSOM Training -------- Refer Iris Training to see how to train the model before plotting Data Preparation ---------------- Just make sure you are setting the mouse_click flag to True to see interactive plots. .. code-block:: python num1 = get_cluster_array(X[:, 0], clust) num2 = get_cluster_array(X[:, 1], clust) cat = count_classes_in_cluster(y, clust) perc_sentosa = get_perc_cluster(y, 0, clust) iris_class_counts_cluster_array = count_classes_in_cluster(y, clust) align = np.arange(len(iris_class_counts_cluster_array[0])) num_classes = count_classes_in_cluster(y, clust) num_sentosa = num_classes[:, 0] int_dict = { 'data': X, 'target': y, 'clust': clust, 'num1': num1, 'num2': num2, 'cat': cat, 'topn': 5, } # Interactive hit histogram fig, ax, patches, text = som.hit_hist(X, mouse_click=True, **int_dict) plt.show() Output: ^^^^^^^ .. figure:: images_int/iris_interactive_0_0.jpg :alt: Plot Output 1 :width: 500px :align: center Initial interactive window (on clicking cluster center opens a menu) .. figure:: images_int/iris_interactive_1_0.jpg :alt: Cluster center as pie chart :width: 500px :align: center Clustered items as pie chart ( on clicking pie ) .. figure:: images_int/iris_interactive_2_0.jpg :alt: Cluster center as stem plot :width: 500px :align: center Clustered items as stem plot ( on clicking stem ) Conclusion ---------- In this example we see the implementation of hit histogram to see whats inside the cluster. We can follow the same for all plots by just setting the flag mouse_click = True